Whenever we are showing at art and craft fairs, people of all ages love playing with the Koch tilings. I think the appeal is that like many fractals, they evoke nature. And there is something satisfying about getting the intricate edges to meet, and have a piece slide into place.
So we decided to try another, based on one of the dragon curves. There are several choices, some much more delicate than others. This delicate edge comes from the fact that flat fractals have infinitely long edges, and a fractional dimension between 1 and 2. The closer the dimension is to 2, the more intricate, and therefore more difficult to cut and fragile. We settled on Knuth's terdragon because the fractal dimension is high enough to be interesting, but still makes for a sturdy tile.
It is pretty easy to learn how to attach Koch tiles to each other. The tiles cannot be the same size. There are a couple of attachment points for two Koch tiles. The Dragon tiles, on the other hand, seem to take a little longer before users readily identify how to connect them. But they are actually more flexible. Any two tiles, regardless of size, can be connected, and there are several ways to attach.
We debuted our Dragon tiles at the 2018 Joint Mathematics Meeting, and as with the Koch tiles, they were a hit with the young and not-so-young. This little guy made our day:
Check out the dragons in our store.